Rheolef  7.2
an efficient C++ finite element environment
p_laplacian_newton.cc

The p-Laplacian problem by the Newton method.

The p-Laplacian problem by the Newton method

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "p_laplacian.h"
int main(int argc, char**argv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
string approx = (argc > 2) ? argv[2] : "P1";
Float p = (argc > 3) ? atof(argv[3]) : 1.5;
Float tol = (argc > 4) ? atof(argv[4]) : 1e5*eps;
size_t max_iter = (argc > 5) ? atoi(argv[5]) : 500;
derr << "# P-Laplacian problem by Newton:" << endl
<< "# geo = " << omega.name() << endl
<< "# approx = " << approx << endl
<< "# p = " << p << endl
<< "# tol = " << tol << endl
<< "# max_iter = " << max_iter << endl;
p_laplacian F (p, omega, approx);
field uh = F.initial ();
int status = newton (F, uh, tol, max_iter, &derr);
dout << setprecision(numeric_limits<Float>::digits10)
<< catchmark("p") << p << endl
<< catchmark("u") << uh;
return status;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
field initial() const
see the catchmark page for the full documentation
Definition: catchmark.h:67
see the environment page for the full documentation
Definition: environment.h:121
This file is part of Rheolef.
int newton(const Problem &P, Field &uh, Float &tol, size_t &max_iter, odiststream *p_derr=0)
see the newton page for the full documentation
Definition: newton.h:98
STL namespace.
The p-Laplacian problem by the Newton method – class header.
int main(int argc, char **argv)
rheolef - reference manual
Definition: sphere.icc:25
Float epsilon